Exam II: MTH 221, Spring 2016

Ayman Badawi

QUESTION 1. $((\sqrt{\pi}+1) / 3.14)$. Let D be a subset of R^{2} that consists of all points on the x -axis and all points on the y-axis. Then
(a) D is a subspace of R^{2} and $\operatorname{dim}(D)=1 . \quad$ (b) D is a subspace of R^{2} and $\operatorname{dim}(D)=2$. (c) D is not a subspace of R^{2} because it is not closed under addition \quad (d) D is not a subspace of R^{2} because it is not closed under scalar-multiplication.
(e) D is not a subspace of R^{2} because of (c) and (d).
$((\sqrt{\pi}+2) / 3.24)$. Given D is a subspace of R^{4} and $\operatorname{dim}(D)=3$. Then
(1) Every 3 nonzero points in D form a basis for D. (2) Every 3 independent points in R^{4} form a basis for D. (3) Every 2 nonzero points in D are independent
(4) Every 4 nonzero points in D are dependent.
$((\sqrt{\pi}+3) / 3.34)$. Given $D=\left\{f(x) \in P_{3} \mid f^{\prime}(1)=0\right\}$ is a subspace of P_{3}. Then
(a) $\left\{x-1, x^{2}-1\right\}$ forms a basis for D.
(b) $\left\{x^{2}-2 x\right\}$ forms a basis for D.
(c) $\left\{1, x-1, x^{2}-1\right\}$ forms a basis for D.
(d) $\left\{1, x^{2}-2 x\right\}$ forms a basis for D.
$((\sqrt{\pi}+4) / 3.44)$. One of the following is not a subspace of $R^{2 \times 2}$.
(1) $\left\{\left.\left[\begin{array}{cc}a & a \\ 2 b & b\end{array}\right] \right\rvert\, a, b \in R\right\}$.
(2) $\left\{\left.\left[\begin{array}{cc}a & a \\ 1 & 3 b\end{array}\right] \right\rvert\, a, b \in R\right\}$.
(3) $\left\{\left.\left[\begin{array}{cc}a & a+b \\ c & 3 b\end{array}\right] \right\rvert\, a, b, c \in R\right\}$.
(4) $\left\{\left.\left[\begin{array}{cc}-2 a & 6 a+b \\ 0 & 3 c\end{array}\right] \right\rvert\, a, b, c \in R\right\}$
$((\sqrt{\pi}+5) / 3.54)$. Given $D=\left\{f(x) \in P_{3} \mid \int_{0}^{1} f(x) d x=0\right\}$ is a subspace of P_{3}. Then
(a) $\left\{2 x-1,3 x^{2}-1\right\}$ forms a basis for D.
(b) $\left\{2 x-1,3 x^{2}-2 x, 6 x^{2}-2 x-1\right\}$ forms a basis for D. (c) $\left\{x-0.5, x^{2}-2 x\right\}$ forms a basis for $D \quad$ (d) $\left\{x-1, x^{2}-x\right\}$ forms a basis for D.
$((\sqrt{\pi}+6) / 3.64)$. Given $D=\operatorname{span}\left\{((1,1,1,0),(-1,1,0,0),(0,4,2,0)\}\right.$. Then we know that D is a subspace of R^{4}. Hence $\operatorname{dim}(D)=$
(1) 4
(2) 3
(3) 2
(4) 1
$((\sqrt{\pi}+7) / 3.74)$. Given $D=\operatorname{span}\left\{((1,1,1,0),(-1,1,0,0),(0,4,2,0)\}\right.$. Then we know that D is a subspace of R^{4}. One of the following points does not belong (live) in D.
(a) $(0,6,3,0)$
(b) $(4,0,1,0)$
(c) $(2,0,1,0)$
(d) $(0,0,0,0)$
$((\sqrt{\pi}+8) / 3.84)$. Given $D=\operatorname{span}\left\{((1,1,1,0),(-1,1,0,0),(0,4,2,0)\}\right.$. Then we know that D is a subspace of R^{3}. One of the following points belongs (lives) in D.
(1) $(5,1,3,0)$
(2) $(2,0,2,0)$
(3) $(2,0,-2,0)$
(4) $(0,3,1,0)$
$((\sqrt{\pi}+9) / 3.94)$. Given $D=\left\{((a+2 b, 2 a+4 b, 2 c) \mid a, b, c \in R\}\right.$. Then we know that D is a subspace of R^{4}. One of the following is a basis for D
(a) $\{(1,2,0),(2,4,0),(0,0,2)\}$
(b) $\{(1,2,0),(0,0,1)\}$
(c) $\{(1,2,0),(0,0,1),(0,2,0)\}$ (d) $\{(1,2,0)\}$
$(\sqrt{\pi}+10) / 3.104)$. One of the following is a basis for R^{3}
(1) $\{(1,2,1),(-1,-2,0),(0,0,1)\}$
(2) $\{(1,2,0),(0,2,1),(-2,-2,1)\}$
(3) $\{(1,1,1),(-1,4,7),(-2,-2,9)\}$
(4) $\{(1,2,1),(2,4,0),(0,0,2)\}$
$(\sqrt{\pi}+11) / 3.114)$. Given $D=\left\{A \in R^{2 \times 2} \mid A^{T}=-A\right\}$. Then one of the following is true :
$\begin{array}{lll}\text { (a) } D \text { is a subspace of } R^{2 \times 2} & \text { (b) } D \text { is not a subspace of } R^{2 \times 2} \text { because } D \text { is not closed } \\ \text { under addition. } & \text { (c) } D \text { is a not subspace of } R^{2 \times 2} \text { because } D \text { is not closed under scalar- }\end{array}$ under addition. (c) D is a not subspace of $R^{2 \times 2}$ because D is not closed under scalarmultiplication.
(d) D is a not subspace of $R^{2 \times 2}$ because of (b) and (c)
$(\sqrt{2}+1)$. Given $D=\left\{A \in R^{3 \times 3} \mid A\right.$ is upper triangular $\}$ is a subspace of $R^{3 \times 3}$. Then $\operatorname{dim}(D)=$
(1) 1
(2) 6
(3) 2
(4) 3
$(\sqrt{2}+2)$. Given Let $A=\left[\begin{array}{ccc}4 & 0 & a_{1} \\ 8 & 8 & a_{2} \\ 12 & 8 & a_{3}\end{array}\right]$ such that $|A|=20$. Consider the system of linear equations $A X=\left[\begin{array}{l}0 \\ 0 \\ 5\end{array}\right]$. Then the value of x_{3} is
(a) 0
(b) 5
(c) 8
(d) 4
(e) More information is needed.
$(\sqrt{2}+3)$. Given Let $A=\left[\begin{array}{ccc}4 & 0 & a_{1} \\ 8 & 8 & a_{2} \\ 12 & 8 & a_{3}\end{array}\right]$ such that $|A|=20$. Consider the system of linear equations $A X=\left[\begin{array}{l}0 \\ 2 \\ 2\end{array}\right]$. Then the value of x_{1} is
(1) 0
(2) $\frac{1}{2}$
(3) 2
(4) $\frac{1}{4}$
(5) 4
$(\sqrt{2}+4)$. One of the following is a basis for P_{3}
(a) $\left\{x^{2}, x^{2}+x, x^{2}+1\right\}$ $\left\{x^{2}+1, x+1, x^{2}+2 x+3\right\}$.
(b) $\left\{1, x^{2}+x, 2 x^{2}+2 x+3\right\}$
(c) $\left\{1, x^{2}+1, x^{2}+5\right\}$
(d)
$(\sqrt{2}+5)$. Given A is row-equivalent to $B=\left[\begin{array}{cccc}1 & 0 & 0 & -1 \\ -1 & 0 & 1 & 1 \\ 0 & 0 & -1 & 0 \\ -2 & 0 & 0 & 2\end{array}\right]$. Then $N(A)$ is
(1) $\operatorname{span}\{(1,1,0,-1)\}$
(2) $\operatorname{span}\{(1,0,0,-1)\}$
(3) $\operatorname{span}\{(1,0,0,1),(0,1,0,0))\}$
(4) $\operatorname{span}\{(1,0,0,0),(0,1,0,0))\}$
$(\sqrt{2}+6)$. Let A be a 3×3 matrix such that $C_{A}(\alpha)=(\alpha-2)(\alpha-a)^{2}$ for some real number a. Given trace $(A)=12$. Then $|A|=$
(a) 20
(b) 10
(c) 24
(d) 50
(e) 12
$(\sqrt{2}+7)$. Given A is a 3×3 such that $C_{A}(\alpha)=(\alpha-3)(\alpha-2)(\alpha-4)$. Then one of the following is true: (1) -A is similar to $D=\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 2\end{array}\right]$
(2) $|A|=9$
(3) $\operatorname{trace}(A+I)=10$
(4) $\left|A^{T}\right|=\frac{1}{24}$.
$(\sqrt{2}+8)$. Let A be a 3×3 matrix such that $C_{A}(\alpha)=(\alpha-2)(\alpha-1)^{2}, E_{1}=\operatorname{span}\{(1,1,0),(0,1,0)\}$ and $E_{2}=$ $\operatorname{span}\{(-1,-1,3)\}$. Then we know that there is an invertible matrix Q such that $Q^{-1} A Q=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]$. One possibility for Q is
(a) $Q=\left[\begin{array}{ccc}1 & -1 & 2 \\ 1 & -1 & 2 \\ 0 & 3 & 0\end{array}\right]$
(b) $Q=\left[\begin{array}{ccc}1 & -2 & 0 \\ 1 & -2 & 1 \\ 0 & 6 & 0\end{array}\right]$
(c) $Q=\left[\begin{array}{ccc}1 & 0 & -1 \\ 1 & 1 & -1 \\ 0 & 0 & 3\end{array}\right]$
(d) $Q=\left[\begin{array}{ccc}-1 & 1 & 0 \\ -1 & 1 & 1 \\ 3 & 0 & 0\end{array}\right]$
$(\sqrt{2}+9)$. Let A be a 3×3 matrix such that $C_{A}(\alpha)=\alpha(\alpha-2)(\alpha-1)$. Then $\left|A^{2}+I\right|=$
(1) 1
(2) 36
(3) 10
(4) 6

Faculty information

